Home > Catalogue > Diodes, Transistors & Thyristors > Bipolar Transistors (BJT)> Gcore

Bipolar Transistors (BJT)

Results:
Bipolar Transistors (BJT) Results:
Filter Results: -1/3
Comprehensive
Price Priority
Stock Priority
Image
Part Number
Manufacturer
Description
Availability
Unit Price
Quantity
Operation
ULN2803
Gcore
1.6V 100μA 40V 500mA SOP-18
Quantity: 20000
Ship Date: 5-10 working days
2000+ $0.0744
4000+ $0.0732
6000+ $0.0713
- +
x $0.0744
Ext. Price: $148.80
MOQ: 2000
Mult: 2000
SPQ: 2000
ULN2003M
Gcore
Quantity: 25000
Ship Date: 5-10 working days
2500+ $0.0669
5000+ $0.0658
7500+ $0.0642
- +
x $0.0669
Ext. Price: $167.25
MOQ: 2500
Mult: 2500
SPQ: 2500
ULN2001
Gcore
Quantity: 40000
Ship Date: 5-10 working days
4000+ $0.0297
8000+ $0.0293
12000+ $0.0285
- +
x $0.0297
Ext. Price: $118.80
MOQ: 4000
Mult: 4000
SPQ: 4000

Bipolar Transistors (BJT)

BJT stands for Bipolar Junction Transistor, a crucial component in electronic circuits. Here's a concise introduction in English:

Definition:
A Bipolar Junction Transistor (BJT) is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of three layers of semiconductor material: an emitter, a base, and a collector. The emitter and collector are doped differently to create a PNP (positive-negative-positive) or NPN (negative-positive-negative) configuration.

Function:
BJTs function by allowing a small current to control a larger current flow. They operate in one of three modes: active, saturation, or cutoff. In the active mode, the base-emitter junction is forward-biased, and the base-collector junction is reverse-biased, allowing current to flow from emitter to collector. In saturation, both junctions are forward-biased, and the transistor acts as a closed switch. In cutoff, both junctions are reverse-biased, and no current flows.

Applications:
BJTs are used in a wide range of applications, including:
1. Amplifiers: They amplify weak signals in audio systems, radio receivers, and other electronic devices.
2. Switches: They can be used as digital switches in computers and other digital systems.
3. Voltage regulators: They help maintain a stable voltage in power supplies.
4. Motor controls: They are used in the control circuits of electric motors.

Selection Criteria:
When selecting a BJT, consider the following:
1. Current Gain (hFE): The higher the gain, the more current can be controlled with a given input current.
2. Power Rating: Ensure the BJT can handle the power levels required for the application.
3. Operating Voltage: Choose a BJT with a suitable voltage range for the circuit.
4. Frequency Response: For high-frequency applications, select a BJT with a high cutoff frequency.
5. Physical Size and Packaging: Consider the physical dimensions and the type of package that fits the design.
6. Temperature Range: Ensure the BJT can operate within the temperature range of the application.
7. Cost: Factor in the cost-effectiveness of the BJT for the intended use.

BJTs are fundamental to the operation of many electronic devices, and their selection is critical for the performance and reliability of the system.
Please refer to the product rule book for details.