Home > Catalogue > Data Conversion ICs > Analog-to-Digital Converters (ADC)> STMicroelectronics

Analog-to-Digital Converters (ADC)

Results:
Analog-to-Digital Converters (ADC) Results:
Filter Results: -1/5
Comprehensive
Price Priority
Stock Priority
Image
Part Number
Manufacturer
Description
Availability
Unit Price
Quantity
Operation
ISOSD61
STMicroelectronics
25Msps 16bit Serial Voltage Delta-Sigma SOIC-16-300MIL
Quantity: 283
Ship Date: 7-13 working days
49+ $4.3623
98+ $4.008
147+ $3.9279
- +
x $4.3623
Ext. Price: $213.75
MOQ: 49
Mult: 49
ADC1283IPT
STMicroelectronics
STMicroelectronicsAnalog-to-digital converter, 16Pin
Quantity: 2500
Ship Date: 6-13 working days
2500+ $1.4288
7500+ $1.4173
25000+ $1.4059
- +
x $1.4288
Ext. Price: $3572.00
MOQ: 2500
Mult: 2500
SPQ: 2500
ADC120IPT
STMicroelectronics
STMicroelectronics 12 bit analog-to-digital converter, 8road, Serial (SPI)interface, Single-ended input, 16Pin
Quantity: 2500
Ship Date: 6-13 working days
2500+ $2.6413
7500+ $2.6201
25000+ $2.599
- +
x $2.6413
Ext. Price: $6603.25
MOQ: 2500
Mult: 2500
SPQ: 2500
TSA1401IF
STMicroelectronics
20MS/s 14bit Differential Pipeline TQFP-48 SMD mount
Quantity: 0
Ship Date: 8-13 working days
250+ $46.1859
- +
x $46.1859
Ext. Price: $11546.47
MOQ: 250
Mult: 250
SPQ: 1
TSA1005-40IFT
STMicroelectronics
2.25V~2.7V 40Msps 10bit 10 Parallel Differential 2.25V~2.7V Pipelined TQFP-48 SMD mount,glue mount
Quantity: 0
Ship Date: 8-13 working days
2400+ $13.735
- +
x $13.735
Ext. Price: $32964.00
MOQ: 2400
Mult: 2400
SPQ: 1

Analog-to-Digital Converters (ADC)

ADCs (Analog-to-Digital Converters)

Definition:
An Analog-to-Digital Converter (ADC) is an electronic component that converts continuous signals from the real world (analog signals) into discrete digital values that can be processed by digital systems, such as microcontrollers or computers.

Function:
The primary function of an ADC is signal conversion. It samples an analog signal at regular intervals and quantizes it to a digital value, which is typically represented in binary form. This digital value can then be used for further processing, storage, or transmission.

Applications:
1. Data Acquisition: In systems that monitor physical phenomena, such as temperature, pressure, or sound, ADCs are used to digitize sensor outputs for analysis.
2. Audio Processing: ADCs are crucial in digital audio systems for converting analog audio signals into digital formats for processing, storage, or transmission.
3. Image Processing: In digital cameras, ADCs convert the analog signals from the image sensor into digital images that can be stored or displayed.
4. Medical Equipment: Medical devices often use ADCs to digitize signals from patient monitors for analysis and diagnosis.
5. Industrial Control: In automation and control systems, ADCs are used to interface with analog sensors and actuators.

Selection Criteria:
1. Resolution: The number of bits the ADC can output, which determines the precision of the digital representation.
2. Sample Rate: The speed at which the ADC can convert analog signals, measured in samples per second or Hertz (Hz).
3. Input Range: The voltage range that the ADC can accept, which must match the output of the analog source.
4. Linearity: How accurately the ADC represents the input signal across its full range.
5. Noise Performance: The level of noise introduced by the ADC, which affects the signal-to-noise ratio.
6. Power Consumption: Important for battery-operated devices or systems where energy efficiency is critical.
7. Cost: The budget for the project can influence the choice of ADC, as higher performance often comes with a higher price tag.
8. Interface: The type of digital interface the ADC uses, such as SPI, I2C, or parallel, which must be compatible with the system's architecture.

When selecting an ADC, it's essential to consider the specific requirements of the application to ensure the chosen component meets the necessary performance criteria.
Please refer to the product rule book for details.