Home > Catalogue > Data Conversion ICs > Analog-to-Digital Converters (ADC)> HGSEMi

Analog-to-Digital Converters (ADC)

Results:
Analog-to-Digital Converters (ADC) Results:
Filter Results: -1/9
Comprehensive
Price Priority
Stock Priority
Image
Part Number
Manufacturer
Description
Availability
Unit Price
Quantity
Operation
TLC2543CM
HGSEMi
encapsulation:SOP-20
Quantity: 20000
In Stock
22+
2000+ $4.2239
10000+ $4.1535
20000+ $4.048
- +
x $4.2239
Ext. Price: $8447.79
MOQ: 2000
Mult: 2000
SPQ: 2000
LM331M/TR
HGSEMi
Quantity: 1870
In Stock
24+
1+ $0.2227
10+ $0.2147
30+ $0.2096
100+ $0.1958
1000+ $0.1896
- +
x $0.2227
Ext. Price: $0.22
MOQ: 1
Mult: 1
SPQ: 2500
TLC1543IM/TR
HGSEMi
encapsulation:SOP-20
Quantity: 20000
In Stock
22+
2000+ $3.2102
10000+ $3.1566
20000+ $3.0765
- +
x $3.2102
Ext. Price: $6420.40
MOQ: 2000
Mult: 2000
SPQ: 2000
TLC2543IM
HGSEMi
encapsulation:SOP-20
Quantity: 20000
In Stock
22+
2000+ $4.3929
10000+ $4.3196
20000+ $4.2098
- +
x $4.3929
Ext. Price: $8785.79
MOQ: 2000
Mult: 2000
SPQ: 2000
LM331N
HGSEMi
encapsulation:DIP-8
Quantity: 20000
In Stock
22+
2000+ $0.2542
10000+ $0.2499
20000+ $0.2436
- +
x $0.2542
Ext. Price: $508.40
MOQ: 2000
Mult: 2000
SPQ: 2000
TLC1543WM
HGSEMi
encapsulation:SOP-20
Quantity: 20000
In Stock
22+
2000+ $3.2147
10000+ $3.1611
20000+ $3.0807
- +
x $3.2147
Ext. Price: $6429.40
MOQ: 2000
Mult: 2000
SPQ: 2000
TLC1543CM/TR
HGSEMi
encapsulation:SOP-20
Quantity: 20000
In Stock
22+
2000+ $3.0412
10000+ $2.9905
20000+ $2.9145
- +
x $3.0412
Ext. Price: $6082.40
MOQ: 2000
Mult: 2000
SPQ: 2000
TLC2543IN
HGSEMi
encapsulation:DIP-20
Quantity: 7200
In Stock
22+
720+ $4.7308
3600+ $4.6519
7200+ $4.5337
- +
x $4.7308
Ext. Price: $3406.17
MOQ: 720
Mult: 720
SPQ: 720
TLC2543N
HGSEMi
encapsulation:DIP-20
Quantity: 7200
In Stock
22+
720+ $4.3361
3600+ $4.2638
7200+ $4.1554
- +
x $4.3361
Ext. Price: $3121.99
MOQ: 720
Mult: 720
SPQ: 720

Analog-to-Digital Converters (ADC)

ADCs (Analog-to-Digital Converters)

Definition:
An Analog-to-Digital Converter (ADC) is an electronic component that converts continuous signals from the real world (analog signals) into discrete digital values that can be processed by digital systems, such as microcontrollers or computers.

Function:
The primary function of an ADC is signal conversion. It samples an analog signal at regular intervals and quantizes it to a digital value, which is typically represented in binary form. This digital value can then be used for further processing, storage, or transmission.

Applications:
1. Data Acquisition: In systems that monitor physical phenomena, such as temperature, pressure, or sound, ADCs are used to digitize sensor outputs for analysis.
2. Audio Processing: ADCs are crucial in digital audio systems for converting analog audio signals into digital formats for processing, storage, or transmission.
3. Image Processing: In digital cameras, ADCs convert the analog signals from the image sensor into digital images that can be stored or displayed.
4. Medical Equipment: Medical devices often use ADCs to digitize signals from patient monitors for analysis and diagnosis.
5. Industrial Control: In automation and control systems, ADCs are used to interface with analog sensors and actuators.

Selection Criteria:
1. Resolution: The number of bits the ADC can output, which determines the precision of the digital representation.
2. Sample Rate: The speed at which the ADC can convert analog signals, measured in samples per second or Hertz (Hz).
3. Input Range: The voltage range that the ADC can accept, which must match the output of the analog source.
4. Linearity: How accurately the ADC represents the input signal across its full range.
5. Noise Performance: The level of noise introduced by the ADC, which affects the signal-to-noise ratio.
6. Power Consumption: Important for battery-operated devices or systems where energy efficiency is critical.
7. Cost: The budget for the project can influence the choice of ADC, as higher performance often comes with a higher price tag.
8. Interface: The type of digital interface the ADC uses, such as SPI, I2C, or parallel, which must be compatible with the system's architecture.

When selecting an ADC, it's essential to consider the specific requirements of the application to ensure the chosen component meets the necessary performance criteria.
Please refer to the product rule book for details.